
Rational Rose 2000e
Forward and Reverse
Engineering with Ada 83

Copyright © 1998-2000 Rational Software Corporation.
All rights reserved.

Part Number: 800-023221-000 Rev A
Revision 2.2, March 2000, for Rational Rose 2000e

This document is subject to change without notice.

Note the Reader’s Comments form at the end of this book, which requests
your evaluation to assist Rational in preparing future documentation.

GOVERNMENT RIGHTS LEGEND: Use, duplication, or disclosure by the
U.S. Government is subject to restrictions set forth in the applicable
Rational Software Corporation license agreement and as provided in
DFARS 227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-
7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) (1995), FAR 52.227-19, or FAR
52.227-14, as applicable.

“Rational”, the Rational logo, Rational Rose, ClearCase, and Rational
Unified Process are trademarks or registered trademarks of Rational
Software Corporation in the United States and in other countries. All other
names are used for identification purposes only and are trademarks or
registered trademarks of their respective companies.

Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 ii

Contents

Chapter 1 OOD and Ada 83 .1

Mapping Classes . 1
Standard Classes . 1
Utilities . 2
Parameterized Classes . 3
Bound Classes . 3

Mapping Relationships . 3
Dependency Relationships . 3
Has Relationships . 3
Generalization Relationships (Inheritance) 4
Association Relationships . 5

Achieving Polymorphism with Ada 5

Unmapped Elements for Ada . 5

Chapter 2 Ada Code Generation .7

What is the Ada Generator? . 7

Basic Steps for Iterative Code Development 8
Overview . 8
The Generated Files . 9
The Basic Code Contents . 9
Evaluating the Generated Code 10
Completing the Implementation of the Generated Code . 11
Regenerating Code . 11

Refining the Subsystem and View Structure 12
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 iii

<March 13, 2000 1:54 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/ug83aTOC.doc>

Contents
Determining the Directory for an Ada File 12
Mapping Classes and Modules to Ada Units 13
Specifying Filenames . 14

Refining Class Definitions . 14
Standard Operations . 15
User-Defined Operations . 15
Get and Set Operations . 15
Inherited Operations . 16
Record Fields and Object Declarations 16

Specifying Additional Ada Unit Contents 17
Adding Structured Comments . 17
Adding With Clauses . 17
Adding Global Declarations . 18

Chapter 3 Reverse Engineering from Apex .19

Basic Operations . 19
Creating the Model File . 20
Displaying the Model . 20

Dialog Box Options . 21

How Ada 83 Is Represented In a Class Diagram 22
Mapping Package Specifications 22
Mapping Type Declarations . 22
Details of a Has Relationship . 23
Mapping Subprogram Declarations 23
Mapping Object Declarations . 24
Mapping With Clauses . 24
Ada Constructs not Mapped . 24
Special Handling for Subsystems in the $APEX_BASE
Directory . 25

Chapter 4 Ada 83 Code Generation Properties 27

Design Properties . 28
Spec File Extension . 28
Spec File Backup Extension . 28
iv Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:54 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/ug83aTOC.doc>

Spec File Temporary Extension 29
Body File Extension . 29
Body File Backup Extension . 29
Body File Temporary Extension 29
Create Missing Directories . 30
Generate Bodies . 30
Generate Standard Operations 30
Implicit Parameter . 31
Stop On Error . 31
Error Limit . 31
File Name Format . 31
Directory . 32

Class Properties . 33
Code Name . 34
Class Name . 34
Class Access . 34
Implementation Type . 35
Is Subtype . 35
Polymorphic Unit . 35
Handle Name . 35
Handle Access . 36
Discriminant . 36
Variant . 36
Enumeration Literal Prefix . 37
Record Field Prefix . 37
Generate Standard Operations 37
Implicit Parameter . 38
Class Parameter Name . 38
Default Constructor Kind . 38
Default Constructor Name . 39
Inline Default Constructor . 39
Copy Constructor Kind . 39
Inline Copy Constructor . 40
Destructor Name . 40
Inline Destructor . 40
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 v

<March 13, 2000 1:54 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/ug83aTOC.doc>

Contents
Class Equality Operation . 41
Handle Equality Operation . 41
Inline Equality . 41
Is Task . 41

Operation Properties . 42
Code Name . 42
Subprogram Implementation . 42
Class Parameter Mode . 43
Inline . 43
Entry Code . 43
Exit Code . 43

Has Properties . 43
Code Name . 44
Name If Unlabeled . 44
Data Member Name . 45
Get Name . 45
Inline Get . 45
Set Name . 45
Inline Set . 46
Is Constant . 46
Initial Value . 46
Variant . 47
Container Generic . 48
Container Type . 48
Container Declarations . 48

Attribute Properties . 49
Code Name . 49
Data Member Name . 49
Get Name . 49
Inline Get . 50
Set Name . 50
Inline Set . 50

Association Role Properties . 50
Code Name . 51
vi Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:54 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/ug83aTOC.doc>

Name If Unlabeled . 51
Data Member Name . 51
Get Name . 52
Inline Get . 52
Set Name . 52
Inline Set . 52
Initial Value . 52
Container Generic . 53
Container Type . 53
Container Declarations . 53

Association Properties . 53
Name If Unlabeled . 54
Get Name . 54
Inline Get . 55
Set Name . 55
Inline Set . 55
Generate Associate . 55
Associate Name . 55
Inline Associate . 56
Generate Dissociate . 56
Dissociate Name . 56
Inline Dissociate . 56

UML Package Properties . 56
Directory . 56

Module Spec Properties . 56
Generate . 57
Copyright Notice . 57
Return Type . 57
Generic Formal Parameters . 58
Additional Withs . 58

Module Body Properties . 59
Generate . 59
Copyright Notice . 59
Return Type . 60
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 vii

<March 13, 2000 1:54 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/ug83aTOC.doc>

Contents
Additional Withs . 60

Index .61
viii Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:54 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/ug83aTOC.doc>

Chapter 1

OOD and Ada 83

This document contains the following topics:

■ “Mapping Classes” on page 1

■ “Mapping Relationships” on page 3

■ “Achieving Polymorphism with Ada” on page 5

■ “Unmapped Elements for Ada” on page 5

Note: Because UML and Ada use the word “package” to designate
two different concepts, this document uses the phrase “UML
package” for a package in the UML acceptation, and the word
“package” without qualification for an Ada package.

Mapping Classes

The following kinds of classes in the UML notation have a mapping
to Ada.

■ “Standard Classes” on page 1

■ “Utilities” on page 2

■ “Parameterized Classes” on page 3

■ “Bound Classes” on page 3

Standard Classes

A class, as defined by UML, is a set of objects that share a common
structure and a common behavior. This concept is best represented
as an Ada package with a private type and a set of visible
subprograms.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 1

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/1ood.doc>

Chapter 1 OOD and Ada 83
The structure of a class is a private or limited private type,
implemented as a record type. The name of the type defaults to
Object. Each “has” relationship, generalization relationship, and
attribute becomes a field in the record. Optionally, there may be an
additional access type, called Handle, that points to the class type.

Using this representation of a class in Ada, an object is simply an
instance (i.e. variable declaration) of the class type and is accessed,
manipulated, and controlled by the subprograms in the class
package.

Class Operations

The behavior of the class is captured by the subprograms in the
visible part of the package. Each operation defined in the class is
mapped to either an Ada procedure or function. The formal
parameter list begins with the class type, whose name defaults to
this.

Usually, several standard operations are needed for every class.
Constructors (default name: Create), are responsible for creation
and initialization of class objects. A copy constructor adds
additional logic required when copying the contents of one object to
another. The destructor (default name: Free) may deallocate
memory or call other destructors. Finally, an equality operation
can be added when “=” does not make sense.

Export control adornments can be attached to operations. If the
export control is public, the subprograms will be part of the visible
part of the package. Otherwise, the subprogram will be hidden in
the body.

Utilities

Generally, a utility is used to collect a set of free subprograms that
are cohesive by some measure. For instance, consider a collection
of subprograms (String_Compare, Upper_Case, …) that manipulate
a string, yet do not need any direct access to the structure of a
string. These can be gathered together into a utility.

In Ada, a utility is represented as a package containing a collection
of subprograms. These packages typically have names ending with
suffixes like _Utilities, _Services, etc. A utility package has no class
type.
2 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/1ood.doc>

Mapping Relationships
Parameterized Classes

A parameterized class in the UML notation corresponds to a
generic package in Ada. Class parameters become generic formal
parameters.

Bound Classes

A bound class maps to a generic instantiation in Ada.

Mapping Relationships

The following relationships defined in the UML notation have a
defined mapping to Ada:

■ “Dependency Relationships” on page 3

■ “Has Relationships” on page 3

■ “Generalization Relationships (Inheritance)” on page 4

■ “Association Relationships” on page 5

Dependency Relationships

The dependency relationship means that a client class is
dependent on the interfaces of a supplier class. A dependency
relationship maps to an Ada with clause. Note that a “has”
association or generalization relationship also implies a with
clause.

Export control adornments on a dependency relationship define
the location of the with clause. If the relationship is public, the
clause will be in the package specification. Otherwise, it will be in
the body.

Has Relationships

“Has” relationships are not part of the UML notation. However, they
can be created in Rose using the View:As Booch option. When viewed
using the Booch or OMT notation, they are displayed as
unidirectional aggregation relationships.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 3

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/1ood.doc>

Chapter 1 OOD and Ada 83
The “has” (aggregation) relationship denotes a whole/part
association. There are two distinct types of “has” relationships: by-
value and by-reference. A by-value “has” relationship, also known
as physical containment, generally indicates that the part does not
exist independently of the whole, and/or the whole is responsible
for construction and destruction of the part. A by-reference
relationship, also referred to as logical containment, indicates that
the part is not physically contained within the whole and is
potentially shared with other objects.

A “has” relationship becomes a component in the client's class
record type. The type of the record component depends on the by-
value or by-reference nature of the relationship. If the relationship
is by-value, the type of the component is the class type of the part
class (i.e., Object). If the relationship is by-reference, the
component type must use the access type of the part class (i.e.,
Handle).

When the static adornment is added to a “has” relationship, the
relationship is interpreted as being a class relationship rather than
an object relationship. In Ada, this means that the relationship will
be represented as a variable declaration in the private part of the
client's package.

Generalization Relationships (Inheritance)

Ada 83 has no direct language support for inheritance. With the
help of automation, however, inheritance can be achieved. There
are actually several ways to support inheritance; the one chosen for
the Ada 83 Generator is the best balance of understandability,
extensibility, and simplicity.

Inheritance can best be achieved by using type extension, which
builds on an existing class by inheriting, modifying, and/or adding
to both the structure and behavior of the existing type. In Ada, type
extension is accomplished by creating a new class package that re-
declares all of the subprograms of the superclass, and declares a
new class type that includes an instance of the superclass as a
component. The implementation of the re-declared subprograms
simply call back to the subprograms in the superclass' package.
The subclass' package can then be extended by adding additional
attributes, relationships, and operations, and/or overriding the
implementation of the re-declared subprograms.
4 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/1ood.doc>

Achieving Polymorphism with Ada
Association Relationships

Associations are similar to “has” relationships.

■ For unidirectional associations, the generated code is identical
to that which would be generated for a “has” relationship.

■ For bidirectional associations the data structures are identical
to that which would be generated for two symmetrical “has”
relationships. An association provides a set of operations that
preserve the integrity of the linkage between the objects.

■ Association classes provide an additional mechanism to store
and retrieve the information held by the association class.

Achieving Polymorphism with Ada

Because Ada 83 has no built-in polymorphism, the Ada 83
Generator produces the subprograms and data structures needed
to emulate polymorphism.

This technique consists of creating a union package over the root
class and its direct subclasses. This package consists of a variant
record type that uses an enumeration type listing the possible
variants. The enumerated type includes the root class and all
subclasses. This package also re-declares all of the subprograms
exported by the superclass. The body of each of these subprograms
uses the discriminant of the variant record to dispatch a call to the
appropriate subprogram.

Unmapped Elements for Ada

The following elements are part of the UML notation, and can be
described in Rational Rose, but have no mapping to the Ada
language. They are ignored or flagged by the code generator:

■ Metaclasses

■ Abstract classes

■ Friendship

■ Multiple inheritance
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 5

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/1ood.doc>

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/1ood.doc>

Chapter 2

Ada Code Generation

This chapter contains the following topics:

■ “What is the Ada Generator?” on page 7

■ “Basic Steps for Iterative Code Development” on page 8

■ “Refining the Subsystem and View Structure” on page 12

■ “Refining Class Definitions” on page 14

■ “Specifying Additional Ada Unit Contents” on page 17

What is the Ada Generator?

The Ada Generator is the code generation capability that is
provided by the Ada 83 add-in to Rational Rose. The commands for
the Ada Generator are located in the Ada 83 submenu of the Rose
Tools menu.

You use the Ada Generator to generate Ada units from information
in a Rose model. These units contain Ada code constructs that
correspond to the notation items (classes, relationships, and
adornments) you have defined in the model via diagrams and
specifications.

The Ada Generator provides code-generation properties that
control the kinds of Ada code constructs that are generated for the
various kinds of notation items in the model. You can use the
default values for these properties or you can specify different
values to generate the code you want.

The Ada Generator inserts specially-marked code regions into the
generated files where you can add further code (for example, to fill
in extra private declarations in a package specification). By default,
such regions are preserved, so you can regenerate the file without
losing the code you added.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 7

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/2code_gen.doc>

Chapter 2 Ada Code Generation
The Ada Generator may generate code in a directory hierarchy or,
if Rational Apex is available, in subsystems and views. In order to
generate code in subsystems and views, the Apex add-in must be
activated, and the property CreateApexSubsystemAndView of the
Apex add-in must be set to “yes”. The Ada Generator, when
generating code for Apex, makes use of some properties defined by
the Apex add-in. These properties have a name which starts with
“Apex” and are described in the documentation for the Apex add-in.

Basic Steps for Iterative Code Development

This section contains the following topics:

■ “Overview” on page 8

■ “The Generated Files” on page 9

■ “The Basic Code Contents” on page 9

■ “Evaluating the Generated Code” on page 10

■ “Completing the Implementation of the Generated Code” on
page 11

■ “Regenerating Code” on page 11

Overview

The basic strategy for generating code is to use the default values
for code-generation properties initially, and later introduce non-
default values as needed. This section describes the steps for
generating Ada units from a Rose model.

By default, code is generated in the current working view
(determined initially when you start Rose/Ada and changed each
time you open a model in a different view). If this is unacceptable,
you can specify a default view before generating code.

In order to generate Ada 83 code, you must first activate the Ada 83
add-in using the Add-In Manager, which is accessible from the Add-
Ins menu.

Then, you must set the default language for your model to be
Ada 83: choose the Tools:Options menu item, and in the Options dialog
box click the Notation tab; use the Default Language list to select
Ada 83.
8 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/2code_gen.doc>

Basic Steps for Iterative Code Development
You may generate a different language for some classes by
associating them with a component that has a different language.

1. Start Rose, if necessary.

2. Create or open the Rose model from which you want to
generate code and display an appropriate class diagram.

3. Select one or more class items (classes, utilities, parameterized
classes and bound classes) or UML packages.

4. Choose the Code Generation command from the Tools:Ada 83
submenu. If code generation fails, inspect the log.

5. Evaluate the generated code. Based on your evaluation, you
can change the model and/or code-generation properties, and
then regenerate the code.

The Generated Files

The generated files are placed in a directory based on the
properties of the model and the component UML packages. By
default, each logical or component UML package in Rose is
associated with an Apex view within a subsystem (if Apex is
available) or with a hierarchy of directories (if Apex is not available).

In general one specification file (.1.ada) is generated for each class
you selected in the diagram. The name of each file is derived from
the name of the corresponding class. If you selected a UML
package, a file is generated for each class in the UML package.

Note that the generated file structure realizes the physical portion
of your Rose model. If you have developed only a logical model
(class diagrams), the Ada Generator assumes an implicit physical
model in which each class is effectively assigned to an implicit
module specification, and therefore an Ada package specification.

The Basic Code Contents

The content of the generated code is based on the notation items in
the logical portion of your model. In general:

■ Each selected class generates a private record declaration and
visible operations in a package specification. In addition, an
optional access type, known as a handle, can be generated.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 9

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/2code_gen.doc>

Chapter 2 Ada Code Generation
■ Each of a class’s “has” relationships generates a component.
The relationship’s containment and multiplicity partly
determine the type of the component, and may create
additional supporting type declarations.

■ Each of a class’s navigable association roles generates a
component. The role's containment and multiplicity partly
determine the type of the component, and may create
additional supporting type declarations.

■ Each operation in a class specification generates a subprogram
declaration in the package specification.

■ Generalization relationships generate components in the record
declaration. In addition, all non-standard operations in the
superclass are duplicated in the subclass package
specification.

■ Each selected utility generates a package specification with
subprogram and object declarations only.

■ “Has”, generalization, association and dependency
relationships result in appropriate with clauses.

■ If desired, a body is generated for each specification, with
stubbed code for the user-defined operations.

The Ada Generator takes into account all model information that
pertains to the selected class items, even information that does not
appear in the diagram. For example, a component is generated for
every “has” relationship that is defined for a class, including “has”
relationships defined on other diagrams or in the class
specification.

Evaluating the Generated Code

After you have located the generated files, you evaluate them to
determine whether to use them as generated. Based on your
evaluation, you may decide to regenerate the code after refining the
model, adjusting the values of code-generation properties, or both.

Use the information provided in the rest of this chapter to guide
your evaluation. Each section lists some of the things you can
change about a particular aspect of code generation.
10 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/2code_gen.doc>

Basic Steps for Iterative Code Development
Completing the Implementation of the Generated Code

When you are satisfied with the way code is generated from your
model, you complete the code by implementing the package bodies.
If you did not use the Ada Generator to create stubbed bodies, you
can select the specifications in Apex, and choose the Build Body
command from the Compile menu. Rational recommends, however,
that you let Rose/Ada generate code for the bodies, since it will
produce the appropriate code regions.

To complete the implementation of your code, you may insert
additional statements and/or declarations in the preserved code
regions. A preserved code region is a special block of comments
starting with --## and containing the clause preserve=yes. Preserved
code regions are preserved by the code generator the next time the
code is regenerated. This makes sure that you may continue
evolving your model in Rose/Ada after you have started refining the
implementation of the code. Note that some of the code regions that
Rose/Ada generate have preserve=no, so if you want them
preserved, you must change this clause to preserve=yes.

You cannot add your own code regions: if you try to do this, they
will be considered orphaned by the code generator. You must use
the code regions produced by the Ada Generator.

Regenerating Code

You can regenerate code for a given set of class items by following
the same steps you used to generate the original code. When you
regenerate code into existing files, the current contents of these
files are saved in backup files before the new contents are written.
By default, each backup file has the extension .1.ad~ or .2.ad~, as
appropriate. The same backup files are overwritten each time you
regenerate code to the same source-code files. The regenerated
files:

■ Reflect any changes you made to the model or to properties.

■ Contain any code regions you edited in the previously
generated version of the files, provided that the preserve
keyword for each region was set to Yes.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 11

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/2code_gen.doc>

Chapter 2 Ada Code Generation
Note that if you delete or rename a notation item for which a code
region was preserved, that region is “orphaned” when you
regenerate code. This means that the Ada Generator places the
code region in a special section at the end of the regenerated file so
that you can decide whether to reuse any of the edits you made in
that region. The Ada Generator automatically changes the preserve
keyword to No in orphaned regions, so that they are discarded the
next time you regenerate the file.

Refining the Subsystem and View Structure

This section contains the following topics:

■ “Determining the Directory for an Ada File” on page 12

■ “Mapping Classes and Modules to Ada Units” on page 13

■ “Specifying Filenames” on page 14

Determining the Directory for an Ada File

There are several properties which the Ada Generator uses when
determining the directory for an Ada file, if Apex is available:

■ The project properties Directory and Apex View

■ The UML package properties Apex Subsystem and Apex View

The directory for a module is based on the concatenation of the
project Directory property, and the UML package’s Apex
Subsystem and Apex View properties. Modules must be contained
within component UML packages.

The directory for a class which has been assigned to a module is
determined by applying these rules to its assigned module. The
directory for a class which has not been assigned to a module is
based on the UML package to which it is assigned: if it is enclosed
in a logical UML package which is assigned to a component UML
package, its directory is created from the Apex Subsystem and
Apex View properties for the component UML package. If Apex
Subsystem is blank, the Apex subsystem name is set to the name
of the component UML package.
12 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/2code_gen.doc>

Refining the Subsystem and View Structure
If it is enclosed in a logical UML package which is not assigned to
a component UML package, its directory is created from the default
values of Apex Subsystem and Apex View properties, plus the
project Directory property. If the default Apex Subsystem property
is blank, the subsystem name is set to the name of the logical UML
package.

If Apex is not available, a hierarchy of directories is created using
the name of the component UML packages (if they exist) or of the
logical UML packages (in the absence of component UML
packages).

Mapping Classes and Modules to Ada Units

By default, each class is assigned to an implicit module
specification. From these implicit modules, the Ada Generator
produces a package specification containing the class definition.
The units are generated according to the values in the default
module-spec property set.

To change the default mapping from classes to units, you have two
options. The first option involves only the class diagram:

1. Create a uses relationship where the client class will become
the Ada unit, and the supplier class will be declared within the
Ada unit.

2. Change the name of the relationship to the keyword decl.

Your second option is to assign two or more classes to the same
module:

1. Introduce component diagrams into your model.

2. Create a module specification for each Ada specification you
want to generate.

3. Assign each class to the appropriate module via the class's
specification: to generate a package specification, you assign
the class to a module specification. To generate the code for
multiple classes in a single package, you assign each class to
the same module.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 13

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/2code_gen.doc>

Chapter 2 Ada Code Generation
Specifying Filenames

The name of a generated file has two parts: a name and an
extension, separated by a period (for example, foo.1.ada). The
name is generated automatically, and the extension is controlled by
different code-generation properties. If you are using Rational
Apex, you should not change these values.

When a file is generated from a module, the filename is determined
by the name of the module: it is the same as the module name,
except in lowercase.

In the default case where classes are mapped to implicit modules,
each implicit module assumes the name of the corresponding
class. Consequently, each generated filename is based on the
implicit module name (and, indirectly, on the class name).

To specify a non-default file name for a generated class, introduce
a component diagram, if necessary, and assign the class to a
module specification with the desired name.

Refining Class Definitions

This section contains the following topics:

■ “Standard Operations” on page 15

■ “User-Defined Operations” on page 15

■ “Get and Set Operations” on page 15

■ “Inherited Operations” on page 16

■ “Record Fields and Object Declarations” on page 16

The Ada Generator creates a type declaration for each selected
class. The format of the type depends on the following property
values:

■ Class Name

■ Discriminant

■ Implementation Type

■ Is Subtype

■ Is Task

■ Variant
14 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/2code_gen.doc>

Refining Class Definitions
See “Ada 83 Code Generation Properties” on page 27 for more
information on each property.

Standard Operations

Standard operations are subprogram declarations that are
commonly found in Ada classes. They include:

■ Default constructor

■ Copy constructor

■ Destructor

■ Equality operation

By default, each class is generated with a default constructor, copy
constructor, and destructor. Class properties permit you to specify
the kind (procedure or function) and name for some of these
standard operations.

Note that you can overload a standard operation by setting the
relevant class property to cause it to be generated, and then
specifying one or more additional operations with the same name,
but different parameters in the class specification.

User-Defined Operations

User-defined operations are subprogram declarations that are
generated from the operations you define in a class specification.
Note that you do not need to define standard operations in a class
specification, unless you want to overload them (see above).

If you want additional subprogram declarations for a class, or if
you want different arguments or return types, you must edit the
class specification.

One operation property, ClassParameterMode, permits you to
specify the parameter mode of the class parameter, which is
included automatically.

Get and Set Operations

Get and set operations are subprogram declarations that provide
access to components. By default, a pair of get and set operations
are generated from each “has” relationship, providing the
relationship is public.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 15

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/2code_gen.doc>

Chapter 2 Ada Code Generation
You can suppress the generation of a get and set operations by
blanking-out the GetName and SetName properties in the property
set that is attached to the has relationship. To define your own get
and set functions, you define them as you would any other user-
defined operation in the class specification.

Inherited Operations

When one class (called a subclass) inherits another class, all of the
visible user-defined, get, and set operations defined in the
superclass get replicated in the package specification of the
subclass. This is how Ada 83 can achieve inheritance: the data is
inherited by adding a field to the record, and the operations are
inherited by replicating them in the subclass definition.

When you implement the body of an inherited operation, you
typically do nothing except call the operation of the inherited class
with record field that matches that class. If you do anything else,
you are overriding that operation.

Record Fields and Object Declarations

Record fields are generated from “has”, association and
generalization relationships and attributes defined in diagrams or
in specifications. (If you have set the static adornment on the “has”
relationship, an object declaration in the private part of the
package specification is generated.

The component type is determined by a number of factors. By
default, the type is determined by a combination of the supplier
class and the multiplicity and containment of the “has”
relationship.

In the simplest cases, the component type is:

■ The class name of the supplier class for a one-to-one by-value
relationship.

■ The handle name of the supplier class for a one-to-one by-
reference relationship.

In more complex cases (maximum allowable cardinalities larger
than 1), the Ada Generator inserts a container class for the
component type, which you can either use as generated or replace
with the name of a container class of your own.
16 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/2code_gen.doc>

Specifying Additional Ada Unit Contents
For bounded containers, the Ada Generator creates an array
declaration in the private part of the class package specification.

For unbounded containers, the Ada Generator instantiates a
container generic package in the private part of the package
specification.

You replace these default container classes by setting the various
Container class properties.

Specifying Additional Ada Unit Contents

You can tailor aspects of the structured comments and context
clauses that appear at the beginning of the generated Ada units.
You can also cause the Ada Generator to generate visible
declarations at the beginning of one or more units.

■ “Adding Structured Comments” on page 17

■ “Adding With Clauses” on page 17

■ “Adding Global Declarations” on page 18

Adding Structured Comments

The Ada Generator inserts a block of structured comments at the
beginning of each generated file. You can set properties to generate
a copyright notice string in these comments.

In the default case where classes are mapped to implicit modules,
you edit properties in the default module-spec property set, which
is attached to the implicit modules. If you have explicitly assigned
classes to modules, you must edit each property set that is
attached to a module.

Adding With Clauses

By default, the Ada Generator produces with clauses in units
based on class relationships and module dependencies in your
model. If you want additional with clauses to appear in one or more
generated files, use one of the following methods, as appropriate.

If you want more generated units to reference each other in with
clauses, you can inspect the relationships among existing items in
the model to determine whether you have represented them
adequately.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 17

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/2code_gen.doc>

Chapter 2 Ada Code Generation
For example, you may find that you need to add a uses relationship
from one class to another, which will cause a with clause to be
generated in the first class's Ada unit. (A with clause is generated
only if the classes are generated in different units.)

Similarly, you can introduce dependencies among modules in a
module diagram, which result in generated with clauses.

If you want any of the generated units to reference units that are
not among the generated units, you can use the AdditionalWiths
property to insert additional with clauses to reference those units.

If you want to put a special with clause in just one or two generated
units, you can do so by editing these units directly. To do this, you
insert the desired with clauses between these source markers at
the beginning of the unit:

--##begin module.withs preserve=yes
--##end module.withs

Adding Global Declarations

You can cause the Ada Generator to generate global declarations
before the first class definition in a unit. To do this, you:

1. Introduce a module diagram, if necessary, and assign one or
more classes to a module specification (or body, as
appropriate).

2. Double-click on the module specification to bring up its
specification.

3. Enter the desired declaration(s) in the Declarations box. The
text you enter here will be inserted at the beginning of the
generated unit.
18 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/2code_gen.doc>

Chapter 3

Reverse Engineering from Apex

REVERSE ENGINEERING FROM APEX

Rose can analyze Ada 83 code compiled with Rational Apex and
generate a Rose model containing class and component diagrams
that present a high-level view of the code.

Note: This capability is only available for Ada units that have been
compiled with the Apex compiler, and that all units must be in the
installed (analyzed) or coded states.

This chapter contains the following topics:

■ “Basic Operations” on page 19

■ “Dialog Box Options” on page 21

■ “How Ada 83 Is Represented In a Class Diagram” on page 22

Basic Operations

Reverse Engineer can create both class diagrams and component
diagrams. Class diagrams will show the relationships among Ada
specifications, types and objects. Component diagrams come in
two forms: 1) An Ada unit diagram, which displays the “with”
structure of the Ada units in a program, independent of subsystem
structure; and 2) A subsystem diagram, which displays the import
structure of the subsystems you specify. Within each subsystem is
a display of the “with” structure of the Ada units in that view.

This section contains the following topics:

■ “Creating the Model File” on page 20

■ “Displaying the Model” on page 20
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 19

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/3reverse_engineer.doc>

Chapter 3 Reverse Engineering from Apex
Creating the Model File

No matter which type of diagram you want, Reverse Engineer will
always generate a model file, called rose_ada.mdl by default. This
file can be opened within Rose for layout and display.

Select the Ada unit or view you wish to diagram, and choose Reverse
Engineer... from the Rose:Ada Apex submenu. You will see the Reverse
Engineer dialog box, where you can modify various options. Choose
OK or Apply to create the model file. See “Dialog Box Options” on
page 21.

Displaying the Model

Once you have created the model file, you can load it into Rose.
Select the file in the directory viewer (you may need to do
File:Redisplay first). Then choose Start Rose from the Rose:Ada
submenu. This will invoke Rose and display the model.

Note: For traversal to work, you must invoke Rose from the Apex
menu. If Rose is already running before you started Apex, exit Rose
and restart from the Apex menu command.

Once Rose is invoked, your next action depends on whether you
created a class diagram or a component diagram. If you created a
class diagram, choose Tools:Layout Diagram to format the diagram. If
you created a component diagram, choose Browse:Component Diagram .
Select the <Top Level>/Main component diagram and choose OK. When
the module is displayed, you will see the UML packages or units
displayed in a straight diagonal line. Layout the diagram by
choosing Tools:Layout Diagram .

If you created a component diagram, you can double-click on a
UML package box to see the units within that view. You will need
to run Tools:Layout Diagram on each UML package individually.

If you created a class diagram based on Apex views, you will see
UML packages in the top-level class diagram. Double-click on the
UML package to see the classes and utilities in that view. You will
need to run Tools:Layout Diagram on each UML package individually.

Use File:Save to save the model with the diagrams laid out.

To traverse from an unit in a Rose diagram to the actual Ada source
code, select the unit and choose Browse:Browse Spec . This will invoke
the Apex editor for that unit.
20 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/3reverse_engineer.doc>

Dialog Box Options
Dialog Box Options

Here is a brief description of each option in the Reverse Engineer
dialog box.

Include Closure of Views/Units

With this button selected, Reverse Engineer will include all selected
views or units, plus the import closure or Ada closure. This option
is the default.

Exclude Views/Units with prefix

Use this option to exclude views or units starting with a given
prefix. For instance, you might want to exclude the
rational_dir/base/ada area.

Include Views/Units with prefix

Use this option to include only views or units starting with the
given prefix. This option would let you limit your diagram to a
particular project, for example.

Include only Views/Units selected

When this option is selected, only the views or units on the right
side of the Objects or Views area will be included in the petal file.

Petal File Name

By default, Reverse Engineer will create a file called rose_ada.mdl.
Use this box to have it create a different file.

Include Classes

If you select this button, Reverse Engineer will create a class
diagram of the units or views selected.

Include Modules

If you select this button, Reverse Engineer will create a component
diagram of the units or views selected. If neither Include Classes or
Include Modules is selected, a component diagram showing just
the import structure of the subsystems will be created.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 21

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/3reverse_engineer.doc>

Chapter 3 Reverse Engineering from Apex
How Ada 83 Is Represented In a Class Diagram

Reverse Engineer uses various algorithms to map Ada constructs
to the UML notation, based primarily on the mapping described in
Chapter 1.

This section contains the following topics:

■ “Mapping Package Specifications” on page 22

■ “Mapping Type Declarations” on page 22

■ “Details of a Has Relationship” on page 23

■ “Mapping Subprogram Declarations” on page 23

■ “Mapping Object Declarations” on page 24

■ “Mapping With Clauses” on page 24

■ “Ada Constructs not Mapped” on page 24

■ “Special Handling for Subsystems in the $APEX_BASE
Directory” on page 25

Mapping Package Specifications

An Ada package will become either a utility or a class. To become a
class, the package must meet the following criteria:

■ It must define at least one private record type

■ All visible subprograms must include a parameter with a
private record type

Mapping Type Declarations

All types declared in the specification of a package become classes
in the class diagram.

Most types become “implementation types,” where the
ImplementationType property is set to the definition of the type,
and where no operations or attributes are assigned to the class.
These classes are not visible in the initial class diagram displayed
by Rose, but can be made visible using Query:Add Classes .
22 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/3reverse_engineer.doc>

How Ada 83 Is Represented In a Class Diagram
If a type is a record type, defined in the private part of a package
specification, it becomes a class. The components of the record
become attributes, or “has” relationships, of the class. The
subprograms that include the record type as a parameter become
operations of the class.

If a type is an access type to a private record type, no class is
created, but the Handle Name property of the referenced class is
set based on the name of type.

Normally every class has an associated utility, which is the parent
package where the type is declared. If, however, all subprogram
declarations map to a class, then the first class that is not an
implementation type becomes the representation of the entire
package.

To associate each type with its enclosing package, Reverse
Engineer creates a dependency relationship with the type as the
supplier and the enclosing utility, or class if the utility is not
needed, as the client. The relationship is named decl, a keyword
that the code generator uses to determine whether a class is
declared within the context of a utility or other class.

Details of a Has Relationship

The multiplicity and access of a “has” relationship are determined
by the type of each component of the record. If the type is a simple
type, the multiplicity is set to 1. If it’s an array, the multiplicity is
set to the size of the array, or to * if the array is unbounded. If the
type is defined by a generic, and the generic is declared in the same
package, the multiplicity is set to *.

If the component of the record is an access type, the access is set
to “by-reference,” and otherwise is set to “by-value.”

Mapping Subprogram Declarations

All subprograms declared in an package specification, visible or
private, become operations. If there is a private record declaration,
and the subprogram includes a parameter or that type, or is a
function that returns that type, then the operation is assigned to
that class. Otherwise, the operation is assigned to the utility that
represents the package.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 23

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/3reverse_engineer.doc>

Chapter 3 Reverse Engineering from Apex
Mapping Object Declarations

An object declaration is a variable, constant, or named number
declared in a package specification. Each object declaration
becomes a static attribute. If the object is a constant, the
IsConstant property is set to True. If the object is a named number,
Type field of the relationship is set to “constant.”

If the package where the object is declared contains at least one
class, and all subprograms map to classes, then the objects
become static attributes of the first class found in the package.
Otherwise, the objects become static attributes of the utility.

An exception declaration, while not technically an object, maps to
an attribute using the same algorithms described above for
variables and constants.

Mapping With Clauses

As Reverse Engineer does its analysis, it tracks the with’s that
would be automatically generated by “has” relationships in
package specification. The remaining with clauses, those that are
used for parameter types and return types, become dependency
relationships in the model.

Ada Constructs not Mapped

There are several constructs that are ignored by Reverse Engineer
and not included in the Rose model:

■ Representation clauses

■ Use clauses

■ Incomplete Types

■ Pragmas

■ Library-level subprogram specifications
24 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/3reverse_engineer.doc>

How Ada 83 Is Represented In a Class Diagram
Special Handling for Subsystems in the $APEX_BASE Directory

Since the subsystems in the $APEX_BASE directory are defined by
Apex, doing a complete analysis only wastes space in the model.
However, some analysis of the types defined in these subsystems is
required to guarantee that “has” relationships in other subsystems
have classes as their suppliers. Thus Reverse Engineer examines
only the type declarations in these subsystems, and does not
evaluate attributes or operations.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 25

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/3reverse_engineer.doc>

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/3reverse_engineer.doc>

Chapter 4

Ada 83 Code Generation Properties

This chapter contains the following topics:

■ “Design Properties” on page 28

■ “Class Properties” on page 33

■ “Operation Properties” on page 42

■ “Has Properties” on page 43

■ “Attribute Properties” on page 49

■ “Association Role Properties” on page 50

■ “Association Properties” on page 53

■ “UML Package Properties” on page 56

■ “Module Spec Properties” on page 56

■ “Module Body Properties” on page 59
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 27

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Chapter 4 Ada 83 Code Generation Properties
Design Properties

This section contains the following topics:

■ “Spec File Extension” on page 28

■ “Spec File Backup Extension” on page 28

■ “Spec File Temporary Extension” on page 29

■ “Body File Extension” on page 29

■ “Body File Backup Extension” on page 29

■ “Body File Temporary Extension” on page 29

■ “Create Missing Directories” on page 30

■ “Generate Bodies” on page 30

■ “Generate Standard Operations” on page 30

■ “Implicit Parameter” on page 31

■ “Stop On Error” on page 31

■ “Error Limit” on page 31

■ “File Name Format” on page 31

■ “Directory” on page 32

Spec File Extension

The Spec File Extension property specifies the file name extension
that the Ada Generator uses when creating Ada specification files.
For Rational Apex the extension should be 1.ada.

Spec File Backup Extension

If the Ada Generator produces an Ada specification file that already
exists, the previous version of the file is renamed to a backup file.
The Spec File Backup Extension property specifies the file name
extension that the Ada Generator uses when creating backup files
for Ada specifications.
28 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Design Properties
Spec File Temporary Extension

When the Ada Generator writes a specification file, it actually
writes the code to a temporary file. Once the code is completely
written, the following steps are taken:

1. The backup file (see “Spec File Backup Extension” on page 28)
is deleted, if there is one.

2. The existing specification file is renamed to the backup file,
assuming an existing specification file is present.

3. The temporary file is renamed to be the new specification file.

4. The Spec File Temporary Extension property specifies the
filename extension that the Ada Generator uses when creating
temporary specification files.

Body File Extension

The Body File Extension property specifies the file name extension
that the Ada Generator uses when creating Ada body files. For
Rational Apex, the extension should be .2.ada.

Body File Backup Extension

If the Ada Generator produces an Ada body file that already exists,
the previous version of the file is copied to a backup file. The Body
File Backup Extension property specifies the filename extension
that the Ada Generator uses when creating backup files for Ada
bodies.

Body File Temporary Extension

When the Ada Generator writes a body file, it actually writes the
code to a temporary file. Once the code is completely written, the
following steps are taken:

1. The backup file (see the Body File Backup Extension property)
is deleted, if there is one.

2. The existing body file is renamed to the backup file, assuming
an existing body file is present.

3. The temporary file is renamed to be the new body file.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 29

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Chapter 4 Ada 83 Code Generation Properties
4. The Body File Temporary Extension property specifies the
filename extension that the Ada Generator uses when creating
temporary body files.

Create Missing Directories

The Create Missing Directories property indicates whether or not
the Ada Generator should create directories needed to mirror the
model's UML package hierarchy, or stop and report an error if such
directories are missing.

The default setting is True.

Generate Bodies

The Generate Bodies property indicates whether or not the Ada
Generator should create Ada body files for the classes or modules
that are selected for code generation.

When True, the Ada Generator will automatically create Ada bodies
for selected classes and for module specs which have
corresponding module bodies defined for them. Ada bodies will not
be created for module specs which have no corresponding module
body.

When False, the Ada Generator will not automatically create Ada
bodies for selected classes or module specs. Ada bodies will still be
created for module bodies that are explicitly selected.

The default setting is False.

Generate Standard Operations

The Generate Standard Operations property indicates whether or
not the Ada Generator should create the standard operations for
the classes selected for code generation. The property is used in
conjunction with the class property of similar name. When set to
True, the class property is then taken into consideration. When set
to False, no standard operations are generated.

The default setting is True.
30 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Design Properties
Implicit Parameter

The Implicit Parameter property indicates whether or not the Ada
Generator should provide an implicit class parameter object for all
the user-defined operations of a class. The property is used in
conjunction with the class property of similar name. When set to
True, the class property is then taken into consideration. When set
to False, no implicit parameter is generated.

The default setting is True.

Stop On Error

The Stop On Error property indicates whether or not the Ada
Generator stops generating code when the error count threshold is
exceeded (see Error Limit property). This threshold does not apply
to warnings (for which there is no limit) or fatal errors (which cause
the Ada Generator to terminate immediately).

The default setting is True.

Error Limit

The Error Limit property specifies the error count threshold used
in conjunction with the Stop On Error property.

The default setting is 30.

File Name Format

The File Name Format property controls the automatic generation
of directory and file names when the value of the model Directory
property, a UML package Directory property, or a module File
Name property is “AUTO GENERATE”.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 31

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Chapter 4 Ada 83 Code Generation Properties
The value is expected to be an integer followed by zero or more flag
characters. The integer is the maximum number of characters in a
file or directory name. The flags are:

The default, if the property is blank, is to compress the file name to
8 characters on Windows, or 32 on Unix, eliminate vowels first,
eliminate white space, and eliminate underscores. When a blank or
underscore is eliminated, the next character is capitalized.

Directory

The Directory property specifies the project directory, which is the
directory in which all subsystems for a project are generated. This
property defaults to “AUTO GENERATE”, which tells the Ada
Generator to use the current working directory.

_ retain underscores

v retain vowels

u convert all letters to upper case

l convert all letters to lower case

x retain case
32 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Class Properties
Class Properties

This section contains the following topics:

■ “Code Name” on page 34

■ “Class Name” on page 34

■ “Class Access” on page 34

■ “Implementation Type” on page 35

■ “Is Subtype” on page 35

■ “Polymorphic Unit” on page 35

■ “Handle Name” on page 35

■ “Handle Access” on page 36

■ “Discriminant” on page 36

■ “Variant” on page 36

■ “Enumeration Literal Prefix” on page 37

■ “Record Field Prefix” on page 37

■ “Generate Standard Operations” on page 37

■ “Implicit Parameter” on page 38

■ “Class Parameter Name” on page 38

■ “Default Constructor Kind” on page 38

■ “Default Constructor Name” on page 39

■ “Inline Default Constructor” on page 39

■ “Copy Constructor Kind” on page 39

■ “Inline Copy Constructor” on page 40

■ “Destructor Name” on page 40

■ “Inline Destructor” on page 40

■ “Class Equality Operation” on page 41

■ “Handle Equality Operation” on page 41

■ “Inline Equality” on page 41

■ “Is Task” on page 41
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 33

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Chapter 4 Ada 83 Code Generation Properties
Code Name

The Code Name property specifies the name for the class in the
generated code. You need to set this property only if you want the
class to be named differently than it is in the Rose model. This is
especially useful when the Rose model and code are expressed in
different natural languages. The value of this property should be a
valid Ada identifier.

Class Name

The Class Name property determines the Ada type name used by
the Ada Generator to represent a Rose class. For example, if Class
Name is set to File_Type, the Ada Generator will output:

type File_Type is ...;

if Class Name is set to Object , the Ada Generator will output:

type Object is ...;

You have the option of setting the Class Name property to ${class},
where the Ada Generator will use the name of the Rose class for the
name of the type.

Class Access

The Class Access property controls the definition of the Ada type
used by the Ada Generator to represent a Rose class.

Private The type declared by the Ada Generator to
represent the Rose class will be a private type. The
corresponding complete type declaration will
appear in the private part of the Ada specification.

Limited
Private

The type will be a limited private type. The
corresponding complete type declaration will
appear in the private part of the Ada specification.

Public The type will be a public type. Only classes with the
Implementation Type property set can be public.

Do Not
Create

No type declaration will be output by the Ada
Generator.
34 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Class Properties
Implementation Type

The Implementation Type property allows a Rose class to be
defined as something other than a private or limited private record
type. For example, if Implementation Type is set to range 1 .. 500,
the Ada Generator will output (assuming Class Name is set to
Object):

type Object is range 1 .. 500;

If Implementation Type is set to new String (1 .. 4) , the Ada
Generator will output:

type Object is new String (1 .. 4);

Is Subtype

The Is Subtype property is used in conjunction with the
Implementation Type property to define an subtype declaration. It
is ignored when the Implementation Type property is blank.

Polymorphic Unit

The Polymorphic Unit property tells the Ada Generator to treat the
class as a polymorphic class instead of as a normal class. A
polymorphic class must have a single dependency relationship, the
supplier of which is the root of the generalization hierarchy for
which a polymorphic package is to be created.

Handle Name

The Handle Name property determines the name of the type
created by the Ada Generator for “By Reference” instances of the
class. For example, if Handle Name is set to Handle (and all other
properties have their default values), the Ada Generator will
output:

type Object is private;
type Handle is access Object;

If Handle Name is set to Object_Name , the Ada Generator will
output:

type Object is private;
type Object_Name is access Object;
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 35

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Chapter 4 Ada 83 Code Generation Properties
Handle Access

The Handle Access property controls the definition of the Ada type
used by the Ada Generator for “By Reference” instances of the
class.

Discriminant

The Discriminant property specifies the discriminant of the Ada
type used by the Ada Generator to represent a Rose class. For
example, if Discriminant is set to “Size : Positive := 100” (and all
other properties have their default values), the Ada Generator will
output:

type Object (Size : Positive := 100) is private;

The class property Variant and the “has” properties Container Type
and Variant are also used when defining discriminated records.

Variant

The Variant property is used in conjunction with the Discriminant
property to define a single variant part for a discriminated record.
The Variant property should be set to the simple name of a
discriminant defined in the Discriminant property. For example, if
Discriminant contains “Unit : Device := Disk” (and all other
properties have their default values), the Ada Generator will
output:

type Object (Unit : Device := Disk) is record
 ...
end record;

Public (Default) The type will be defined as
“access <Class Name>”

Private The type will be defined as private

Limited Private The type will be defined as limited private

Do Not Create No type will be declared.
36 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Class Properties
If Variant is set to Unit , the Ada Generator will output:

type Object (Unit : Device := Disk) is record
 ...
 case Unit is
 ...
 end case;
end record;

The Variant property is only used in the complete type declaration
in the private part of the Ada specification. It has no effect on the
visible type declaration. The Variant property is ignored when the
Discriminant property is blank.

Enumeration Literal Prefix

The Enumeration Literal Prefix property specifies the prefix that is
prefixed to enumeration literal values, that the Ada Generator
automatically generates.

The default setting is “A_”.

Record Field Prefix

The Record Field Prefix property specifies the prefix that is prefixed
to component and discriminant identifiers, that the Ada Generator
automatically generates.

The default setting is “The_”.

Generate Standard Operations

The Generate Standard Operations property indicates whether or
not the Ada Generator should create the standard operations for
this class. Both the model and class property must be set to True
for this to take effect.

The default setting is True.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 37

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Chapter 4 Ada 83 Code Generation Properties
Implicit Parameter

The Implicit Parameter property indicates whether or not the Ada
Generator should provide an implicit class parameter object for all
the user-defined operations of this class. Both the model and class
property must be set to True for this to take effect.

The default setting is True.

Class Parameter Name

All operations of a class have as an implicit parameter a class
object. The Class Parameter Name property specifies the formal
parameter name used by the Ada Generator for this class object.
For example, if the Class Parameter Name is set to This (and all
other properties have their default values), the class destructor will
be declared as:

procedure Free (This : in out Object);

If Class Parameter Name is changed to The_Object , the class
destructor would be:

procedure Free (The_Object : in out Object);

The Class Parameter Name property also controls the declaration
of the class parameter to the constructor subprogram, get/set
subprograms, inherited subprograms and subprograms for user-
defined operations. It does not affect the names of the class
parameters to the copy and equality subprograms.

Default Constructor Kind

The Default Constructor Kind property determines the kind of
subprogram declared as the class constructor by the Ada
Generator. The declaration of a class constructor can also be
suppressed. If Default Constructor Kind is set to Function, the
declaration output by the Ada Generator will be of the form:

function Create return Object;

If Default Constructor Kind is set to Procedure, the declaration
output by the Ada Generator will be of the form:

procedure Create (This : in out Object);
38 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Class Properties
The properties Class Name, Class Parameter Name and Default
Constructor Name also affect the declaration of the class
constructor.

Default Constructor Name

The Default Constructor Name property controls the simple name
of the class constructor subprogram. For example, if the Default
Constructor Name property is set to Create (and all other
properties have their default values), the Ada Generator will
output:

function Create return Object;

If the Default Constructor Name property is set to New_Item, the
Ada Generator will output:

function New_Item return Object;

Inline Default Constructor

The Inline Default Constructor property specifies whether an inline
pragma should be generated for the Default Constructor.

The default setting is False.

Copy Constructor Kind

The Copy Constructor Kind property determines the kind of
subprogram declared as the class constructor by the Ada
Generator. The declaration of a class constructor can also be
suppressed. If Copy Constructor Kind is set to Function, the
declaration output by the Ada Generator will be of the form:

function Copy (From : in Object) return Object;

Function The class constructor will be declared as a
function.

Procedure The class constructor will be declared as a
procedure.

Do Not Create No class constructor will be declared.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 39

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Chapter 4 Ada 83 Code Generation Properties
If Copy Constructor Kind is set to Procedure, the declaration
output by the Ada Generator will be of the form:

procedure Copy (From : in Object; To: in out Object);

Inline Copy Constructor

The Inline Copy Constructor property specifies whether an inline
pragma should be generated for the Copy Constructor.

The default setting is False.

Destructor Name

The Destructor Name property controls the simple name of the
class destructor subprogram by the Ada Generator. For example, if
the Destructor Name property is set to Free (and all other
properties have their default values), the Ada Generator will
output:

procedure Free (This in out Object);

If the Destructor Name property is set to Deallocate_Item, the Ada
Generator will output:

procedure Deallocate_Item (This in out Object);

If the Destructor Name is blank, no destructor will be generated.

Inline Destructor

The Inline Destructor property specifies whether an inline pragma
should be generated for the Destructor.

The default setting is False.

Function The copy constructor will be declared as a
function.

Procedure The copy constructor will be declared as a
procedure.

Do Not Create No copy constructor will be declared.
40 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Class Properties
Class Equality Operation

The Class Equality Operation property controls the designator of
the equality function declared by the Ada Generator to compare
class objects. For example, if the Class Equality Operation property
is set to “${quote}=${quote}” (and all other properties have their
default values), the Ada Generator will output:

function "=" (L, R : in Object) return Boolean;

If the Class Equality Operation property is set to Is_Equal, the Ada
Generator will output:

function Is_Equal (L, R : in Object) return Boolean;

If the property is blank, no class equality function is output by the
Ada Generator.

Handle Equality Operation

The Handle Equality Operation property controls the designator of
the equality function declared by the Ada Generator to compare
class handles. For example, if the Handle Equality Operation
property is set to “${quote}=${quote}” (and all other properties have
their default values), the Ada Generator will output:

function "=" (L, R : in Handle) return Boolean;

If the Handle Equality Operation property is set to Is_Equal, the
Ada Generator will output:

function Is_Equal (L, R : in Handle) return Boolean;

If the property is blank, no handle equality function is output by
the Ada Generator

Inline Equality

The Inline Equality property specifies whether an inline pragma
should be generated for the Equality operations.

The default setting is False.

Is Task

The Is Task property is used to define a class as a task type.
Operations become entries, and attributes are ignored.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 41

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Chapter 4 Ada 83 Code Generation Properties
Operation Properties

This section contains the following topics:

■ “Code Name” on page 42

■ “Subprogram Implementation” on page 42

■ “Class Parameter Mode” on page 43

■ “Inline” on page 43

■ “Entry Code” on page 43

■ “Exit Code” on page 43

Code Name

The Code Name property specifies the name for the operation in the
generated code. You need to set this property only if you want the
operation to be named differently than it is in the Rose model. This
is especially useful when the Rose model and code are expressed in
different natural languages. The value of this property should be a
valid Ada identifier.

Subprogram Implementation

The code generation property SubprogramImplementation is used
to control the code generated for a subprogram body. This property
can take the values Body, Separate, and Spec. The default is Body.
The semantics of these choices is as follows:

■ If Subprogram Implementation is set to Body, a normal body is
generated.

■ If Subprogram Implementation is set to Separate, a stub is
generated instead of a normal body.

■ If Subprogram Implementation is set to Spec, no body is
generated. This option (which doesn't result in legal code) is
intended to be complemented by the insertion, in some
protected region of the generated code, of a pragma (like Import
or Interface) which specifies the implementation of the
subprogram without providing an explicit body.

In addition, the code generation property Inline is used to control
whether or not a pragma Inline is generated for the operation. This
property defaults to False.
42 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Has Properties
Class Parameter Mode

The Class Parameter Mode property determines the mode of the
class parameter for a particular operation.

The default setting is In Out.

Inline

The Inline property specifies whether an inline pragma should be
generated for the operation.

The default setting is False.

Entry Code

The Entry Code property provides the capability to insert code or
comments at the beginning of the subprogram. This property is
useful for inserting instrumentation, or adhering to documentation
standards.

Exit Code

The Exit Code property provides the capability to insert code or
comments at the end of the subprogram. This property is useful for
inserting instrumentation, or adhering to documentation
standards.

Has Properties

This section contains the following topics:

In Out The mode of the class parameter is “in out”.

In The mode of the class parameter is “in”.

Out The mode of the class parameter is “out”.

Function
Return

The operation will declared as a function with the
Ada type of the class (see property Class Name)
as its return value.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 43

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Chapter 4 Ada 83 Code Generation Properties
■ “Code Name” on page 44

■ “Name If Unlabeled” on page 44

■ “Data Member Name” on page 45

■ “Get Name” on page 45

■ “Inline Get” on page 45

■ “Set Name” on page 45

■ “Inline Set” on page 46

■ “Is Constant” on page 46

■ “Initial Value” on page 46

■ “Variant” on page 47

■ “Container Generic” on page 48

■ “Container Type” on page 48

■ “Container Declarations” on page 48

Code Name

The Code Name property specifies the name for the “has”
relationship in the generated code. You need to set this property
only if you want the “has” relationship to be named differently than
it is in the Rose model. This is especially useful when the Rose
model and code are expressed in different natural languages. The
value of this property should be a valid Ada identifier.

Name If Unlabeled

The Name If Unlabeled property specifies the name which the Ada
Generator will use for an unlabeled “has” relationship. The string
can include the variable ${supplier}, which expands to the name of
the supplier class of the “has” relationship. For example, if class
Message and class Priority are the client and the supplier,
respectively, of an unlabeled “has” relationship, the string
The_${supplier} resolves to The_Priority. In the last example, the
string The_${supplier}_Of_The_Message resolves to
The_Priority_Of_The_Message.

The default setting is “The_${supplier}”.
44 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Has Properties
Data Member Name

The Data Member Name property specifies the name the Ada
Generator outputs for the component corresponding to a “has”
relationship. The string can include the variable ${supplier}, which
expands to the name of the supplier class of the “has” relationship,
and the variable ${relationship}, which expands to the name of the
“has” relationship itself.

If the variable ${relationship} is used, and the “has” relationship is
unlabeled, then the value of ${relationship} will be the value of the
property Name If Unlabeled.

The default setting is “${relationship}”.

Get Name

The Get Name property specifies the name the Ada Generator
outputs for the get accessor of a “has” relationship. The string can
include the variable ${supplier}, which expands to the name of the
supplier class of the “has” relationship, and the variable
${relationship}, which expands to the name of the “has”
relationship itself.

If the variable ${relationship} is used, and the “has” relationship is
unlabeled, then the value of ${relationship} will be the value of the
property Name If Unlabeled.

The default setting is Get_${relationship}.

Inline Get

The Inline Get property specifies whether an inline pragma should
be generated for the Get operation.

The default setting is True.

Set Name

The Set Name property specifies the name the Ada Generator
outputs for the set accessor of a “has” relationship. The string can
include the variable ${supplier}, which expands to the name of the
supplier class of the “has” relationship, and the variable
${relationship}, which expands to the name of the “has”
relationship itself.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 45

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Chapter 4 Ada 83 Code Generation Properties
If the variable ${relationship} is used, and the “has” relationship is
unlabeled, then the value of ${relationship} will be the value of the
property Name If Unlabeled.

The default setting is Set_${relationship}.

Inline Set

The Inline Set property specifies whether an inline pragma should
be generated for the Set operation.

The default setting is True.

Is Constant

If a “has” relationship is static, and the Is Constant property is set
to True, the Ada Generator will create a constant declaration rather
than a variable declaration.

To create a named number declaration, do not set Is Constant to
True; rather, set the type of the attribute to constant.

To define the value of the constant or named number, use the
Initial Value property.

Initial Value

The Initial Value property attaches an initial value to a field
declaration, variable declaration, or constant declaration.
46 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Has Properties
Variant

The Variant property is used in conjunction with the Class
properties Discriminant and Variant to define a class as an Ada
variant record. This Variant property assigns the component for
the “has” relationship to a particular variant of the variant part of
the record. For example, assume that class Peripheral has the
following Ada declaration:

type Object is record
 Unit : Device;
 Status : State;
 Line_Count : Integer;
 Cylinder : Cylinder_Index;
 Track : Track_Number;
end record;

Assume that type Device has the enumerated values (Printer, Disk,
Drum). This declaration can be changed to a discriminated record
through the following steps:

Remove the Unit “has” relationship and set the Class property
Discriminant to “Unit : Device”:

type Object (Unit : Device) is record
 Status : State;
 Line_Count : Integer;
 Cylinder : Cylinder_Index;
 Track : Track_Number;
end record;

Set the Class property Variant to Unit:

type Object (Unit : Device) is record
 Status : State;
 Line_Count : Integer;
 Cylinder : Cylinder_Index;
 Track : Track_Number;
 case Unit is
 end case;
end record;
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 47

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Chapter 4 Ada 83 Code Generation Properties
Set the Variant property for the Line_Count “has” relationship to
Printer, and set the Variant property for the Track and Cylinder
“has” relationships to others:

type Object (Unit : Device) is record
 Status : State;
 case Unit is
 when Printer =>
 Line_Count : Integer;
 when others =>
 Cylinder : Cylinder_Index;
 Track : Track_Number;
 end case;
end record;

The Ada Generator will always put the others variant last in the
variant part.

Container Generic

The Container Generic property provides some control over the
generic package instantiated to handle one-to-many “has”
relationships. For example, if Container Generic is set to List, then
the package List_Generic will be instantiated (if the maximum
allowable cardinality of the “has” relationship is larger than 1). If
Container Generic is changed to Queue, the package
Queue_Generic will be instantiated.

The default setting is List.

Container Type

The Container Type property specifies a data type for the
component generated for a “has” relationship. The Container Type
property can be set to refer to an existing container class, and the
Ada Generator will use that container class instead of generating
its own container class.

Container Declarations

The Container Declarations property lets you create any
declarations, such as array type declarations or generic
instantiations, to support the Container Type property.
48 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Attribute Properties
Attribute Properties

This section contains the following topics:

■ “Code Name” on page 49

■ “Data Member Name” on page 49

■ “Get Name” on page 49

■ “Inline Get” on page 50

■ “Set Name” on page 50

■ “Inline Set” on page 50

Code Name

The Code Name property specifies the name for the attribute in the
generated code. You need to set this property only if you want the
attribute to be named differently than it is in the Rose model. This
is especially useful when the Rose model and code are expressed in
different natural languages. The value of this property should be a
valid Ada identifier.

Data Member Name

The Data Member Name property specifies the name the Ada
Generator outputs for the component corresponding to an
attribute. The string can include the variable ${attribute}, which
expands to the name of the label of the class attribute in the model
or the name specified in the attribute's Code Name property.

The default setting is ${attribute}.

Get Name

The Get Name property specifies the name the Ada Generator
outputs for the get accessor of an attribute. The string can include
the variable ${attribute}, which expands to the name of the label of
the class attribute in the model or the name specified in the
attribute's Code Name property

The default setting is Get_${attribute}.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 49

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Chapter 4 Ada 83 Code Generation Properties
Inline Get

The Inline Get property specifies whether an inline pragma should
be generated for the Get operation.

The default setting is True.

Set Name

The Set Name property specifies the name the Ada Generator
outputs for the set accessor of an attribute. The string can include
the variable ${attribute}, which expands to the name of the label of
the class attribute in the model or the name specified in the
attribute's Code Name property

The default setting is Set_${attribute}.

Inline Set

The Inline Set property specifies whether an inline pragma should
be generated for the Set operation.

The default setting is True.

Association Role Properties

This section contains the following topics:

■ “Code Name” on page 51

■ “Name If Unlabeled” on page 51

■ “Data Member Name” on page 51

■ “Get Name” on page 52

■ “Inline Get” on page 52

■ “Set Name” on page 52

■ “Inline Set” on page 52

■ “Initial Value” on page 52

■ “Container Generic” on page 53

■ “Container Type” on page 53

■ “Container Declarations” on page 53
50 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Association Role Properties
Code Name

The Code Name property specifies the name for the association role
in the generated code. You need to set this property only if you want
the association role to be named differently than it is in the Rose
model. This is especially useful when the Rose model and code are
expressed in different natural languages. The value of this property
should be a valid Ada identifier.

Name If Unlabeled

The Name If Unlabeled property specifies the name to be used for
an unlabeled role. The Ada Generator uses the name of the role to
construct names for the corresponding component and get and set
operations. If the role is not named, the Ada Generator uses this
property to determine the name of the role.

When the Ada Generator needs the name of the role to generate a
name for a component or a get or set operations, ${targetClass}
expands to the name of the association class or the association if
there is one. Otherwise it expands to the name of the supplier
class. If ${association} is used in the NameIfUnlabeled property, it
expands to the name of the association.

The default setting is The_${targetClass}.

Data Member Name

The Data Member Name property specifies the name the Ada
Generator outputs for the component corresponding to an
association role. The string can include the variable ${target},
which expands to the name of the target of the component. If there
is an association class, this is the name of the association. If there
is not an association class, this is the name of the supplier role.

The default setting is ${target}.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 51

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Chapter 4 Ada 83 Code Generation Properties
Get Name

The Get Name property specifies the name the Ada Generator
outputs for the get accessor of an association role. The string can
include the variable ${target}, which expands to the name of the
target of the component. If there is an association class, this is the
name of the association. If there is not an association class, this is
the name of the supplier role.

The default setting is Get_${target}.

Inline Get

The Inline Get property specifies whether an inline pragma should
be generated for the Get operation.

The default setting is True.

Set Name

The Set Name property specifies the name the Ada Generator
outputs for the set accessor of an association role. The string can
include the variable ${target}, which expands to the name of the
target of the component. If there is an association class, this is the
name of the association. If there is not an association class, this is
the name of the supplier role.

The default setting is Set_${target}.

Inline Set

The Inline Set property specifies whether an inline pragma should
be generated for the Set operation.

The default setting is True.

Initial Value

The Initial Value property attaches an initial value to a field
declaration.
52 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Association Properties
Container Generic

The Container Generic property provides some control over the
generic package instantiated to handle one-to-many “has”
relationships. For example, if Container Generic is set to List, then
the package List_Generic will be instantiated (if the maximum
allowable cardinality of the “has” relationship is larger than 1). If
Container Generic is changed to Queue, the package
Queue_Generic will be instantiated.

The default setting is List.

Container Type

The Container Type property specifies a data type for the
component generated for a “has” relationship. The Container Type
property can be set to refer to an existing container class, and the
Ada Generator will use that container class instead of generating
its own container class.

Container Declarations

The Container Declarations property lets you create any
declarations, such as array type declarations or generic
instantiations, to support the Container Type property.

Association Properties

This section contains the following topics:
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 53

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Chapter 4 Ada 83 Code Generation Properties
■ “Name If Unlabeled” on page 54

■ “Get Name” on page 54

■ “Inline Get” on page 55

■ “Set Name” on page 55

■ “Inline Set” on page 55

■ “Generate Associate” on page 55

■ “Associate Name” on page 55

■ “Inline Associate” on page 56

■ “Generate Dissociate” on page 56

■ “Dissociate Name” on page 56

■ “Inline Dissociate” on page 56

Name If Unlabeled

The Name If Unlabeled property specifies the name to be used for
an unlabeled association. The Ada Generator uses the name of the
association to construct names for the corresponding component
and get and set operations. If the association is not named, the Ada
Generator uses this property to determine the name of the
association.

When the Ada Generator needs the name of the association to
generate a name for a component or a get or set operations,
${targetClass} expands to the name of the association class or the
association if there is one. Otherwise it expands to the name of the
supplier class.

The default setting is The_${targetClass}.

Get Name

The Get Name property specifies the name the Ada Generator
outputs for the get accessor of an association class. The string can
include the variable ${association}, which expands to the name of
the association. If the association is unnamed, then the name of
the association class is used.

The default setting is Get_${association}.
54 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Association Properties
Inline Get

The Inline Get property specifies whether an inline pragma should
be generated for the Get operation.

The default setting is False.

Set Name

The Set Name property specifies the name the Ada Generator
outputs for the Set accessor of an association class. The string can
include the variable ${association}, which expands to the name of
the association. If the association is unnamed, then the name of
the association class is used.

The default setting is Set_${association}.

Inline Set

The Inline Set property specifies whether an inline pragma should
be generated for the Set operation.

The default setting is False.

Generate Associate

The Generate Association property determines whether the
procedure is declared or suppressed by the Ada Generator.

The default setting is Procedure.

Associate Name

The Associate Name property specifies the name the Ada Generator
outputs for the Associate operation of an association.

The default setting is Associate.

Procedure The Associate operation will be declared.

Do Not Create No Associate operation will be declared.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 55

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Chapter 4 Ada 83 Code Generation Properties
Inline Associate

The Inline Associate property specifies whether an inline pragma
should be generated for the Associate operation.

The default setting is False.

Generate Dissociate

The Generate Dissociate property determines whether the
procedure is declared or suppressed by the Ada Generator.

The default setting is Procedure.

Dissociate Name

The Dissociate Name property specifies the name the Ada
Generator outputs for the Dissociate operation of an association.

The default setting is Dissociate.

Inline Dissociate

The Inline Dissociate property specifies whether an inline pragma
should be generated for the Dissociate operation.

The default setting is False.

UML Package Properties

Directory

The Directory property specifies the subsystem. This property
defaults to “AUTO GENERATE”.

Module Spec Properties

This section contains the following topics:

Procedure The Dissociate operation will be declared.

Do Not Create No Dissociate operation will be declared.
56 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Module Spec Properties
■ “Generate” on page 57

■ “Copyright Notice” on page 57

■ “Return Type” on page 57

■ “Generic Formal Parameters” on page 58

■ “Additional Withs” on page 58

Generate

The Generate property specifies whether or not the Ada Generator
will generate a code file for the module spec.

This property allows you to prevent code from ever being generated
for a module, such as modules in third party libraries, even if it is
selected when the Ada Generator is invoked.

The default value is True.

Copyright Notice

The Copyright Notice property contains text that is placed in a
comment block at the beginning of the Ada specification file created
by the Ada Generator for the module spec. This property can be
used to include copyright notices or project identification
information at the beginning of a module. The text in the Copyright
Notice property is preceded by comment delimiters (--), so they do
not need to be included in the text of the property itself.

Return Type

The Return Type property specifies the subtype indication for the
return value of a subprogram module. For example, if the Return
Type property is set to Calendar.Time for a subprogram
specification module named Current_Time, the Ada Generator will
output:

function Current_Time return Calendar.Time;

If Return Type is set to blank, the Ada Generator will output:

procedure Current_Time;

The Return Type property is ignored when the module spec is not
a subprogram specification.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 57

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Chapter 4 Ada 83 Code Generation Properties
Generic Formal Parameters

The Generic Formal Parameters property is used to specify the
generic formal part of a generic module spec. For example, if the
Generic Formal Parameters property is set to type Item is private;
for a generic package specification module named Stack, the Ada
Generator will output:

generic
 type Item is private;
package Stack is
 ...
end Stack;

If “Size : in Positive;” is added to Generic Formal Parameters, the
Ada Generator will output:

generic
 type Item is private;
 Size : in Positive;
package Stack is
 ...
end Stack;

The Generic Formal Parameters property is ignored when the
module spec is not a generic. Additional generic formal parameters
may be added to the generic formal part if a generic class is
assigned to the module, because the generic formal parameters of
the generic class will be merged with those of the module.

Additional Withs

The Additional Withs property specifies additional with clauses to
be included in the context clause of the module spec. For example,
if the Additional Withs property is set to Text_Io for a subprogram
specification module named Quadratic_Equation the Ada
Generator will output:

-- Additional Withs:
with Text_Io;
procedure Quadratic_Equation;
58 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Module Body Properties
If Real_Operations is added to Additional Withs, the Ada Generator
will output:

-- Additional Withs:
with Text_Io;
with Real_Operations;
procedure Quadratic_Equation;

Only the simple names of the library units should be listed in the
Additional Withs property, with one library unit per line.

Module Body Properties

This section contains the following topics:

■ “Generate” on page 59

■ “Copyright Notice” on page 59

■ “Return Type” on page 60

■ “Additional Withs” on page 60

Generate

The Generate property specifies whether or not the Ada Generator
will generate a code file for the module body.

This property allows you to prevent code from ever being generated
for a module, such as modules in third party libraries, even if it is
selected when the Ada Generator is invoked.

The default value is True.

Copyright Notice

The Copyright Notice property contains text that is placed in a
comment block at the beginning of the Ada body file created by the
Ada Generator for the module body. This property can be used to
include copyright notices or project identification information at
the beginning of a module. The text in the Copyright Notice
property is preceded by comment delimiters
(--), so they do not need to be included in the text of the property
itself.
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 59

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Chapter 4 Ada 83 Code Generation Properties
Return Type

The Return Type property specifies the subtype indication for the
return value of a subprogram module. For example, if the Return
Type property is set to Calendar.Time for a subprogram body
module named Current_Time, the Ada Generator will output:

function Current_Time return Calendar.Time is ...

If Return Type is set to blank, the Ada Generator will output:

procedure Current_Time is ...

The Return Type property is ignored when the module body is not
a subprogram body.

Additional Withs

The Additional Withs property specifies additional with clauses to
be included in the context clause of the module body. For example,
if the Additional Withs property is set to Text_Io for a subprogram
body module named Quadratic_Equation, the Ada Generator will
output:

-- Additional Withs:
with Text_Io;
procedure Quadratic_Equation is …

If “Real_Operations” is added to Additional Withs, the Ada
Generator will output:

-- Additional Withs:
with Text_Io;
with Real_Operations;
procedure Quadratic_Equation is …

Only the simple names of the library units should be listed in the
Additional Withs property, with one library unit per line.
60 Rational Rose 2000e, Forward and Reverse Engineering with Ada 83

<March 13, 2000 1:16 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/4code_gen_props.doc>

Index
A
abstract classes 5

access

has relationship 23
provide to components 15

Ada 83

code generation properties 28
representation 22

Ada code

traverse to 20

Ada constructs

not mapped 24

Ada file

determine directory 12

Ada Generator 7

Ada type used for By Reference class
instances 36

Ada unit

diagram 19
generate from Rose model 7
map to class and module 13
specify additional contents 17

add

global declarations 18
structured comments 17
uses relationship 18

With clauses 17

Add Classes command 22

Add-In Manager 8

Additional Withs property 58, 60

insert with clauses 18

Apex

generate Rose model 19
reverse engineer 19
start Rose 20

APEX_BASE subsystems 25

As Booch command 3

Associate Name property 55

Associate operation

inline pragma 56
name 55

association class

get accessor 54
set accessor 55

association classes 5

Association Properties 53

Association Relationships 5

association role

get accessor 52
name of corresponding

component 51
set accessor 52
Rational Rose 2000e, Forward and Reverse Engineering with Ada 83 61

<March 13, 2000 1:48 pm; /rose/source/use_ada83.ss/wnteroscmm.wrk/ug83aIX.doc>

Index
specify name 51

Association Role properties 50

attribute name

specify 49

Attribute Properties 49

B
backup specify

backup file name extension 28, 29

basic operations

reverse engineering 19

bidirectional associations 5

bodies

generate 30

Body File backup extension property
29

Body File extension property 29

Body File temporary extension
property 29

body files

create 30

Bound Classes 3

bounded containers 17

Browse

Browse Spec 20
Component Diagram 20

Browse Spec command 20

By Reference

determine name of type 35

by-reference has relationship 4

by-value has relationship 4
62 Rational Rose 2000

<March 13, 2000 1:48 pm; /rose/source/use
C
class

define as task type 41
define as variant record 47
definition 1
map to Ada unit 13
refine definitions 14

Class Access property 34

class constructor

kind of subprogram 39

class constructor subprogram 38

simple name 39

class destructor subprogram

simple name 40

class diagram 19

create 21
format 20
how Ada 83 is represented 22

Class Equality Operation property 41

class handles 41

equality function 41

class name

specify in code 34

Class Name property 34

class objects

equality function 41

Class Operations 2

class parameter

mode 43

Class Parameter Mode property 43

Class Parameter Name property 38

Class properties 33
e, Forward and Reverse Engineering with Ada 83

_ada83.ss/wnteroscmm.wrk/ug83aIX.doc>

Index
clauses

add With 17

closure

include 21

code

complete 11
content of generated 9
insert at beginning 43
insert at end 43
regenerate 11

code development

steps 8

code generation properties 28

code generator 7

Code Name property 34, 42, 44, 49, 51

comments

add structured 17
insert at beginning 43
insert at end 43

complete

generated code 11

component diagram 19

create 21
display 20
format 20

Component Diagram command 20

component type 16

complex 16
simple 16

component/discriminant identifier
prefix 37

Container Declarations property 48,
53

Container Generic property 48, 53
Rational Rose 2000e, Forward and Reverse Engin

<March 13, 2000 1:48 pm; /rose/source/use
Container Type property 48, 53

Copy Constructor

inline pragma 40

copy constructor 15

Copy Constructor Kind property 39

copyright notice

include in Ada body 59
include in Ada spec 57

Copyright Notice property 57, 59

create

Ada body files 30
class diagram 21
component diagram 21
declarations to support Container

Type 48
missing directories 30
model file 20

Create Missing Directories property 30

D
Data Member Name property 45, 49,

51

decl

associate type with enclosing pack-
age 23

declaration

initial value 46
type mapping 22

default constructor 15

Default Constructor Kind property 38

Default Constructor Name property 39

default language 8

define

class as task type 41
eering with Ada 83 63

_ada83.ss/wnteroscmm.wrk/ug83aIX.doc>

Index
class as variant record 47
Rose class as other type 35
subtype declaration 35

definitions

refine class 14

Dependency Relationships 3

design properties 28

Destructor

inline pragma 40

destructor 15

Destructor Name property 40

determine

directory for Ada file 12

dialog box options

Reverse Engineer dialog box
options 21

directory

create missing 30
determine 12

Directory property 32, 56

Discriminant property 36

display

classes and utilities in view 20
component diagram 20
implementation types 22
model 20
units in view 20

Dissociate Name property 56

Dissociate operation

inline pragma 56
name 56

E
Entry Code property 43
64 Rational Rose 2000

<March 13, 2000 1:48 pm; /rose/source/use
Enumeration Literal Prefix property 37

enumeration literal values

specify prefix 37

equality function 41

class handles 41
class objects 41

equality operation 15

Equality operations

inline pragma 41

Error Limit property 31

error threshold 31

evaluate

generated code 10

exception declaration 24

exclude

views or units 21

Exclude Views/Units with prefix
option 21

Exit Code property 43

extension

Body file 29
Body file backup 29
Body file temporary 29
Spec file 28, 29

F
field declaration

initial value 52

File Name Format property 31

filename

specify 14

format

class diagram 20
e, Forward and Reverse Engineering with Ada 83

_ada83.ss/wnteroscmm.wrk/ug83aIX.doc>

Index
component diagram 20

friendship 5

G
Generalization Relationships (Inherit-

ance) 4

generate

Ada units from Rose model 7
code file for module body 59
code file for module spec 57
Rose model from Apex 19
standard operations 30
standard operations for class 37

Generate Associate property 55

Generate Bodies property 30

Generate Dissociate property 56

Generate property 57, 59

Generate Standard Operations proper-
ty 30, 37

generated code

content 9
evaluation 10
implement package bodies 11

generated files 9

generation

directory and file names 31

Generic Formal Parameters property
58

generic instantiation

bound class 3

generic package

parameterized class 3

get accessor name 45

get accessor of association class 54
Rational Rose 2000e, Forward and Reverse Engin

<March 13, 2000 1:48 pm; /rose/source/use
get accessor of association role 52

get accessor of attribute 49

Get Name property 45, 49, 52, 54

Get operation

inline pragma 45, 50, 52, 55

get operations 15

global declarations

add 18

H
Handle Access property 36

Handle Equality Operation property 41

Handle Name property 23, 35

Has Properties 43

has relationship

component name 45
constant declaration 46
details 23
generic package instantiation 48
get accessor name 45
multiplicity and access 23
name in code 44
set accessor name 45
specify data type 48
unlabeled 44

has Relationships 3

I
Implementation Type property 22, 35

implementation types 22

implicit class parameter

generate 38

Implicit Parameter property 31, 38

include
eering with Ada 83 65

_ada83.ss/wnteroscmm.wrk/ug83aIX.doc>

Index
closure 21
copyright notice in Ada body 59
copyright notice in Ada spec 57
views or units 21

Include Classes option 21

Include Closure of Views/Units option
21

Include Modules option 21

Include only Views/Units selected op-
tion 21

Include Views/Units with prefix option
21

inheritance 4

inherited operations 16

Initial Value property 46, 52

Inline Associate property 56

Inline Copy Constructor property 40

Inline Default Constructor property 39

Inline Destructor property 40

Inline Dissociate property 56

Inline Equality property 41

Inline Get property 45, 50, 52, 55

inline pragma 43

Copy Constructor 40
for Destructor 40
generate 39

Inline property 43

Inline Set property 46, 50, 52, 55

insert

comments/code at subprogram be-
ginning 43

comments/code at subprogram
end 43

Is Constant property 46
66 Rational Rose 2000

<March 13, 2000 1:48 pm; /rose/source/use
Is Subtype property 35

Is Task property 41

iterative code development 8

L
Layout Diagram command 20

M
map

classes and modules to Ada units
13

object declarations 24
package specifications 22
subprogram declarations 23
type declarations 22
with clauses 24

Mapping Classes 1

Mapping Relationships 3

metaclasses 5

model

display 20
generate from Apex 19

model file

create 20

module

map to Ada unit 13

module body

generate code for 59

Module Body Properties 59

module spec

generate code for 57
generic formal part 58

Module Spec Properties 56

multiple inheritance 5
e, Forward and Reverse Engineering with Ada 83

_ada83.ss/wnteroscmm.wrk/ug83aIX.doc>

Index
multiplicity

has relationship 23

N
name

component corresponding to at-
tribute 49

has relationship in code 44

Name If Unlabeled property 44, 51, 54

O
object

declaration 24
declarations 16
definition 2
map declarations 24

object oriented development 1

OOD 1

operation name

specify in generated code 42

Operation properties 42

P
package

differences in UML and Ada 1

package specifications

mapping 22

Parameterized Classes 3

Petal File Name option 21

polymorphic class 35

Polymorphic Unit property 35

Polymorphism with Ada 5

prefix

exclude views/units 21
Rational Rose 2000e, Forward and Reverse Engin

<March 13, 2000 1:48 pm; /rose/source/use
include views/units 21

preserved code region 11

private record declaration 9

procedure

declared or suppressed 55, 56

project directory

specify 32

properties

design 28

Q
Query

Add Classes 22

R
Rational Apex

reverse engineer 19

Record Field Prefix property 37

record fields 16

reference

non-generated units 18

refine

class definitions 14
subsystem and view structure 12

regenerate code 11

Return Type property 57, 60

Reverse Engineer command 20

reverse engineering

Ada 83 code 19
basic engineering 19

Rose

Ada
Reverse Engineer 20
eering with Ada 83 67

_ada83.ss/wnteroscmm.wrk/ug83aIX.doc>

Index
Start Rose 20

rose_ada.mdl 20

rename 21

S
set accessor

association class 55
association role 52
attribute 50
name 45

Set Name property 45, 50, 52, 55

Set operation

inline pragma 46, 50, 52, 55

set operations 15

single variant for discriminated record
36

Spec File Backup extension property
28, 29

Spec File extension property 28

specifications

package mapping 22

specify

Ada type name used for Rose class
34

Ada type used to represent Rose
class 34

additional Ada unit contents 17
attribute name 49
body backup file name extension

29
body file name extension 29
body temporary file name exten-

sion 29
class name in generated code 34
component/discriminant identifier

prefix 37
68 Rational Rose 2000

<March 13, 2000 1:48 pm; /rose/source/use
discriminant of Ada type 36
enumeration literal value prefix 37
file name extension 28
filename 14
formal parameter name for class

object 38
generic formal part of generic mod-

ule spec 58
operation name in generated code

42
project directory 32
return type 57
return type of subprogram module

60

Standard Classes 1

standard operations 15

class 2
generate 30, 37

start

Rose from Apex 20

Start Rose command 20

Stop On Error property 31

structured comments

add 17

subprogram

declare as class constructor 38
map declarations 23

subprogram body

control code generation 42

Subprogram Implementation
property 42

subsystem

diagram 19
refine 12
specify 56
e, Forward and Reverse Engineering with Ada 83

_ada83.ss/wnteroscmm.wrk/ug83aIX.doc>

Index
subsystems

APEX_BASE 25

subtype declaration

define 35

T
Tools

Layout Diagram 20

traverse

to Ada source code 20

type declaration

mapping 22

U
UML notation

mapping to Ada 1

UML Package Properties 56

unbounded containers 17

unidirectional associations 5

unlabeled association

name 54

unlabeled has relationship 44

unlabeled role

name 51

unmapped elements 5

use relationship

add 18

user-defined operations 15

Utilities 2

V
Variant property 36, 47

variant record 47
Rational Rose 2000e, Forward and Reverse Engin

<March 13, 2000 1:48 pm; /rose/source/use
view

As Booch 3
exclude by prefix 21
include by prefix 21
refine 12

W
with clauses

add 17
map 24
specify additional in body 60
specify additional in module

spec 58
eering with Ada 83 69

_ada83.ss/wnteroscmm.wrk/ug83aIX.doc>

<March 13, 2000 1:48 pm; /rose/source/use_ada83.
ss/wnteroscmm.wrk/ug83aIX.doc>

	Contents
	Chapter 1�
	OOD and Ada 83
	Mapping Classes
	Standard Classes
	Class Operations

	Utilities
	Parameterized Classes
	Bound Classes

	Mapping Relationships
	Dependency Relationships
	Has Relationships
	Generalization Relationships (Inheritance)
	Association Relationships

	Achieving Polymorphism with Ada
	Unmapped Elements for Ada

	Chapter 2�
	Ada Code Generation
	What is the Ada Generator?
	Basic Steps for Iterative Code Development
	Overview
	1. Start Rose, if necessary.
	2. Create or open the Rose model from which you want to generate code and display an appropriate ...
	3. Select one or more class items (classes, utilities, parameterized classes and bound classes) o...
	4. Choose the Code�Generation command from the Tools:Ada�83 submenu. If code generation fails, in...
	5. Evaluate the generated code. Based on your evaluation, you can change the model and/or code-ge...

	The Generated Files
	The Basic Code Contents
	Evaluating the Generated Code
	Completing the Implementation of the Generated Code
	Regenerating Code

	Refining the Subsystem and View Structure
	Determining the Directory for an Ada File
	Mapping Classes and Modules to Ada Units
	1. Create a uses relationship where the client class will become the Ada unit, and the supplier c...
	2. Change the name of the relationship to the keyword decl.
	1. Introduce component diagrams into your model.

	2. Create a module specification for each Ada specification you want to generate.
	3. Assign each class to the appropriate module via the class's specification: to generate a packa...

	Specifying Filenames

	Refining Class Definitions
	Standard Operations
	User-Defined Operations
	Get and Set Operations
	Inherited Operations
	Record Fields and Object Declarations

	Specifying Additional Ada Unit Contents
	Adding Structured Comments
	Adding With Clauses
	Adding Global Declarations
	1. Introduce a module diagram, if necessary, and assign one or more classes to a module specifica...
	2. Double-click on the module specification to bring up its specification.
	3. Enter the desired declaration(s) in the Declarations box. The text you enter here will be inse...

	Chapter 3�
	Reverse Engineering from Apex
	Basic Operations
	Creating the Model File
	Displaying the Model

	Dialog Box Options
	Include Closure of Views/Units
	Exclude Views/Units with prefix
	Include Views/Units with prefix
	Include only Views/Units selected
	Petal File Name
	Include Classes
	Include Modules

	How Ada 83 Is Represented In a Class Diagram
	Mapping Package Specifications
	An Ada package will become either a utility or a class. To become a class, the package must meet ...

	Mapping Type Declarations
	Details of a Has Relationship
	Mapping Subprogram Declarations
	Mapping Object Declarations
	Mapping With Clauses
	Ada Constructs not Mapped
	Special Handling for Subsystems in the $APEX_BASE Directory

	Chapter 4�
	Ada 83 Code Generation Properties
	Design Properties
	This section contains the following topics:
	“Spec File Extension” on page�28
	“Spec File Backup Extension” on page�28
	“Spec File Temporary Extension” on page�29
	“Body File Extension” on page�29
	“Body File Backup Extension” on page�29
	“Body File Temporary Extension” on page�29
	“Create Missing Directories” on page�30
	“Generate Bodies” on page�30
	“Generate Standard Operations” on page�30
	“Implicit Parameter” on page�31
	“Stop On Error” on page�31
	“Error Limit” on page�31
	“File Name Format” on page�31

	Spec File Extension
	Spec File Backup Extension
	Spec File Temporary Extension
	When the Ada Generator writes a specification file, it actually writes the code to a temporary fi...
	1. The backup file (see “Spec File Backup Extension” on page�28) is deleted, if there is one.
	2. The existing specification file is renamed to the backup file, assuming an existing specificat...
	3. The temporary file is renamed to be the new specification file.
	4. The Spec File Temporary Extension property specifies the filename extension that the Ada Gener...

	Body File Extension
	Body File Backup Extension
	Body File Temporary Extension
	When the Ada Generator writes a body file, it actually writes the code to a temporary file. Once ...
	1. The backup file (see the Body File Backup Extension property) is deleted, if there is one.
	2. The existing body file is renamed to the backup file, assuming an existing body file is present.
	3. The temporary file is renamed to be the new body file.
	4. The Body File Temporary Extension property specifies the filename extension that the Ada Gener...

	Create Missing Directories
	The Create Missing Directories property indicates whether or not the Ada Generator should create ...

	Generate Bodies
	When False, the Ada Generator will not automatically create Ada bodies for selected classes or mo...

	Generate Standard Operations
	The Generate Standard Operations property indicates whether or not the Ada Generator should creat...

	Implicit Parameter
	The Implicit Parameter property indicates whether or not the Ada Generator should provide an impl...

	Stop On Error
	The Stop On Error property indicates whether or not the Ada Generator stops generating code when ...

	Error Limit
	The Error Limit property specifies the error count threshold used in conjunction with the Stop On...

	File Name Format
	Directory

	Class Properties
	This section contains the following topics:
	“Code Name” on page�34
	“Class Name” on page�34
	“Class Access” on page�34
	“Implementation Type” on page�35
	“Is Subtype” on page�35
	“Polymorphic Unit” on page�35
	“Handle Name” on page�35
	“Handle Access” on page�36
	“Discriminant” on page�36
	“Variant” on page�36
	“Enumeration Literal Prefix” on page�37
	“Record Field Prefix” on page�37
	“Generate Standard Operations” on page�37
	“Implicit Parameter” on page�38
	“Class Parameter Name” on page�38
	“Default Constructor Kind” on page�38
	“Default Constructor Name” on page�39
	“Inline Default Constructor” on page�39
	“Copy Constructor Kind” on page�39
	“Inline Copy Constructor” on page�40
	“Destructor Name” on page�40
	“Inline Destructor” on page�40
	“Class Equality Operation” on page�41
	“Handle Equality Operation” on page�41
	“Inline Equality” on page�41

	Code Name
	Class Name
	The Class Name property determines the Ada type name used by the Ada Generator to represent a Ros...
	if Class Name is set to Object, the Ada Generator will output:

	Class Access
	Implementation Type
	The Implementation Type property allows a Rose class to be defined as something other than a priv...
	If Implementation Type is set to new String (1 .. 4), the Ada Generator will output:

	Is Subtype
	Polymorphic Unit
	Handle Name
	The Handle Name property determines the name of the type created by the Ada Generator for “By Ref...
	If Handle Name is set to Object_Name, the Ada Generator will output:

	Handle Access
	Discriminant
	The Discriminant property specifies the discriminant of the Ada type used by the Ada Generator to...

	Variant
	If Variant is set to Unit, the Ada Generator will output:

	Enumeration Literal Prefix
	The Enumeration Literal Prefix property specifies the prefix that is prefixed to enumeration lite...

	Record Field Prefix
	The Record Field Prefix property specifies the prefix that is prefixed to component and discrimin...

	Generate Standard Operations
	The Generate Standard Operations property indicates whether or not the Ada Generator should creat...

	Implicit Parameter
	The Implicit Parameter property indicates whether or not the Ada Generator should provide an impl...

	Class Parameter Name
	All operations of a class have as an implicit parameter a class object. The Class Parameter Name ...
	If Class Parameter Name is changed to The_Object, the class destructor would be:

	Default Constructor Kind
	The Default Constructor Kind property determines the kind of subprogram declared as the class con...
	If Default Constructor Kind is set to Procedure, the declaration output by the Ada Generator will...

	Default Constructor Name
	The Default Constructor Name property controls the simple name of the class constructor subprogra...
	If the Default Constructor Name property is set to New_Item, the Ada Generator will output:

	Inline Default Constructor
	The Inline Default Constructor property specifies whether an inline pragma should be generated fo...

	Copy Constructor Kind
	The Copy Constructor Kind property determines the kind of subprogram declared as the class constr...
	If Copy Constructor Kind is set to Procedure, the declaration output by the Ada Generator will be...

	Inline Copy Constructor
	The Inline Copy Constructor property specifies whether an inline pragma should be generated for t...

	Destructor Name
	The Destructor Name property controls the simple name of the class destructor subprogram by the A...
	If the Destructor Name property is set to Deallocate_Item, the Ada Generator will output:

	Inline Destructor
	Class Equality Operation
	The Class Equality Operation property controls the designator of the equality function declared b...
	If the Class Equality Operation property is set to Is_Equal, the Ada Generator will output:

	Handle Equality Operation
	The Handle Equality Operation property controls the designator of the equality function declared ...
	If the Handle Equality Operation property is set to Is_Equal, the Ada Generator will output:

	Inline Equality
	The Inline Equality property specifies whether an inline pragma should be generated for the Equal...

	Is Task

	Operation Properties
	This section contains the following topics:
	“Code Name” on page�42
	“Subprogram Implementation” on page�42
	“Class Parameter Mode” on page�43
	“Inline” on page�43
	“Entry Code” on page�43

	Code Name
	Subprogram Implementation
	The code generation property SubprogramImplementation is used to control the code generated for a...
	If Subprogram Implementation is set to Body, a normal body is generated.
	If Subprogram Implementation is set to Separate, a stub is generated instead of a normal body.

	Class Parameter Mode
	Inline
	The Inline property specifies whether an inline pragma should be generated for the operation.

	Entry Code
	Exit Code

	Has Properties
	“Code Name” on page�44
	“Name If Unlabeled” on page�44
	“Data Member Name” on page�45
	“Get Name” on page�45
	“Inline Get” on page�45
	“Set Name” on page�45
	“Inline Set” on page�46
	“Is Constant” on page�46
	“Initial Value” on page�46
	“Variant” on page�47
	“Container Generic” on page�48
	“Container Type” on page�48
	Code Name
	Name If Unlabeled
	The Name If Unlabeled property specifies the name which the Ada Generator will use for an unlabel...

	Data Member Name
	If the variable ${relationship} is used, and the “has” relationship is unlabeled, then the value ...

	Get Name
	If the variable ${relationship} is used, and the “has” relationship is unlabeled, then the value ...

	Inline Get
	The Inline Get property specifies whether an inline pragma should be generated for the Get operat...

	Set Name
	If the variable ${relationship} is used, and the “has” relationship is unlabeled, then the value ...

	Inline Set
	The Inline Set property specifies whether an inline pragma should be generated for the Set operat...

	Is Constant
	To create a named number declaration, do not set Is Constant to True; rather, set the type of the...

	Initial Value
	Variant
	The Variant property is used in conjunction with the Class properties Discriminant and Variant to...
	Remove the Unit “has” relationship and set the Class property Discriminant to “Unit : Device”:
	Set the Class property Variant to Unit:
	Set the Variant property for the Line_Count “has” relationship to Printer, and set the Variant pr...

	Container Generic
	The Container Generic property provides some control over the generic package instantiated to han...

	Container Type
	Container Declarations

	Attribute Properties
	“Code Name” on page�49
	“Data Member Name” on page�49
	“Get Name” on page�49
	“Inline Get” on page�50
	“Set Name” on page�50
	Code Name
	Data Member Name
	The Data Member Name property specifies the name the Ada Generator outputs for the component corr...

	Get Name
	The Get Name property specifies the name the Ada Generator outputs for the get accessor of an att...

	Inline Get
	The Inline Get property specifies whether an inline pragma should be generated for the Get operat...

	Set Name
	The Set Name property specifies the name the Ada Generator outputs for the set accessor of an att...

	Inline Set
	The Inline Set property specifies whether an inline pragma should be generated for the Set operat...

	Association Role Properties
	“Code Name” on page�51
	“Name If Unlabeled” on page�51
	“Data Member Name” on page�51
	“Get Name” on page�52
	“Inline Get” on page�52
	“Set Name” on page�52
	“Inline Set” on page�52
	“Initial Value” on page�52
	“Container Generic” on page�53
	“Container Type” on page�53
	Code Name
	Name If Unlabeled
	Data Member Name
	The Data Member Name property specifies the name the Ada Generator outputs for the component corr...

	Get Name
	The Get Name property specifies the name the Ada Generator outputs for the get accessor of an ass...

	Inline Get
	The Inline Get property specifies whether an inline pragma should be generated for the Get operat...

	Set Name
	The Set Name property specifies the name the Ada Generator outputs for the set accessor of an ass...

	Inline Set
	The Inline Set property specifies whether an inline pragma should be generated for the Set operat...

	Initial Value
	Container Generic
	The Container Generic property provides some control over the generic package instantiated to han...

	Container Type
	Container Declarations

	Association Properties
	“Name If Unlabeled” on page�54
	“Get Name” on page�54
	“Inline Get” on page�55
	“Set Name” on page�55
	“Inline Set” on page�55
	“Generate Associate” on page�55
	“Associate Name” on page�55
	“Inline Associate” on page�56
	“Generate Dissociate” on page�56
	“Dissociate Name” on page�56
	Name If Unlabeled
	When the Ada Generator needs the name of the association to generate a name for a component or a ...

	Get Name
	The Get Name property specifies the name the Ada Generator outputs for the get accessor of an ass...

	Inline Get
	The Inline Get property specifies whether an inline pragma should be generated for the Get operat...

	Set Name
	The Set Name property specifies the name the Ada Generator outputs for the Set accessor of an ass...

	Inline Set
	The Inline Set property specifies whether an inline pragma should be generated for the Set operat...

	Generate Associate
	Associate Name
	The Associate Name property specifies the name the Ada Generator outputs for the Associate operat...

	Inline Associate
	The Inline Associate property specifies whether an inline pragma should be generated for the Asso...

	Generate Dissociate
	Dissociate Name
	The Dissociate Name property specifies the name the Ada Generator outputs for the Dissociate oper...

	Inline Dissociate
	The Inline Dissociate property specifies whether an inline pragma should be generated for the Dis...

	UML Package Properties
	Directory

	Module Spec Properties
	“Generate” on page�57
	“Copyright Notice” on page�57
	“Return Type” on page�57
	“Generic Formal Parameters” on page�58
	Generate
	The Generate property specifies whether or not the Ada Generator will generate a code file for th...
	This property allows you to prevent code from ever being generated for a module, such as modules ...

	Copyright Notice
	Return Type
	The Return Type property specifies the subtype indication for the return value of a subprogram mo...
	If Return Type is set to blank, the Ada Generator will output:

	Generic Formal Parameters
	The Generic Formal Parameters property is used to specify the generic formal part of a generic mo...
	If “Size : in Positive;” is added to Generic Formal Parameters, the Ada Generator will output:

	Additional Withs
	The Additional Withs property specifies additional with clauses to be included in the context cla...
	If Real_Operations is added to Additional Withs, the Ada Generator will output:

	Module Body Properties
	This section contains the following topics:
	“Generate” on page�59
	“Copyright Notice” on page�59
	“Return Type” on page�60

	Generate
	The Generate property specifies whether or not the Ada Generator will generate a code file for th...
	This property allows you to prevent code from ever being generated for a module, such as modules ...

	Copyright Notice
	Return Type
	The Return Type property specifies the subtype indication for the return value of a subprogram mo...
	If Return Type is set to blank, the Ada Generator will output:

	Additional Withs
	The Additional Withs property specifies additional with clauses to be included in the context cla...
	If “Real_Operations” is added to Additional Withs, the Ada Generator will output:
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Index

